Extreme Linux

42

8/19/03 12:23 PM Page 42

—p—

Management with Condor, Part 1

By Forrest Hoffman

Agood job queuing and scheduling system is required when-
ever more than a couple of researchers share a Beowulf
cluster. Coordinating with other users about when and where
to run jobs on a shared cluster isn’t impossible, but cluster ad-
ministrators quickly realize the importance of having a ro-
bust batch system once users begin competing for resources.

One popular batch system, OpenPBS (Portable Batch Sys-
tem), was discussed in the October 2002 issue of this column
(http://www.linux-mag.com/2002-10/extreme_01.html),
and the Maui scheduler was covered in November 2002
(http://www.linux-mag.com/2002-11/extreme_01.html).
OpenPBS consists of a job server, a job executor, and a job
scheduler. Maui is an advanced batch scheduler that may be
used in place of the default job scheduler provided in
OpenPBS. Maui decides where, when, and how to run jobs,
based on specified policies, priorities, and resource limitations.

Another batch system, named Condor (http://www.cs.wisc.
edu/condor), is increasingly being used in research environ-
ments for managing compute-intensive jobs on both Beo-
wulf clusters and disparate collections of desktops and work-
stations. Like OpenPBS and other batch systems, Condor
provides a queuing mechanism, scheduling policy, job prior-
ity scheme, and resource classification.

However, unlike most other batch systems, Condor doesn’t
require dedicated compute servers. It can harness otherwise
idle machines by checkpointing and migrating jobs to those
computers (when migrated and restarted, the job continues
precisely where it left off). In addition, Condor can order job
execution as specified by the user, and it enables grid com-
puting by executing jobs on participating computers or clus-
ters in various locations worldwide.

Condor is developed by the Condor Team at the Univer-
sity of Wisconsin, Madison, where it’s been used and devel-
oped for more than ten years. It’s recently become an Open
Source project, but the source code has not yet appeared on
Wisconsin’s web site. Condor runs under HP-UX, Solaris,
IRIX, Digital Unix, Tru64, Mac OS X, and, of course, Linux.
Condor is particularly well-suited to running the same job
hundreds of times with different input data sets or parameters.

Condor uses ClassAds — analogous to classified advertise-
ments in the newspaper — to match job requirements spec-
ified by the user (called job ClassAds) with advertised re-
source attributes (called machine ClassAds), like available
memory, CPU type and speed, and current load average. The
machine ClassAd also advertises the conditions under which
it is willing to run a job, and what type of job it prefers. While
the policy attributes for a machine in a Beowulf cluster might

October 2003 Linux Magazine

be permissive, policy attributes for a co-worker’s workstation
might specify that it’s willing to run jobs only at night and
when there’s no keyboard activity on the machine.

Condor Universes

A universe in Condor defines the environment in which a
job is executed. Supported universes are standard, vanilla,
pvm, mpi, globus, java, and scheduler. The universe
attribute for a job is specified in the submit description file, a
small text file submitted with the job that describes its re-
quirements, the name of the executable, and the names of
any input, output, and log files.

The standard universe provides process migration and
remote system calls, but has some restrictions about what pro-
grams can do. The vanilla universe provides fewer servic-
es, but has very few restrictions.

The pvm and mpi universes provide support for programs
written in PVM (Parallel Virtual Machine) and MPI (Mes-
sage Passing Interface, specifically MPICH), respectively.

The globus universe allows users to submit Globus (http://
www.globus.org) jobs through Condor, and the java universe
supports jobs written for the Java Virtual Machine (JVM).

The scheduler universe allows a job to be executed im-
mediately, without preemption, on the machine where the
job is submitted; the job doesn’t wait to be matched with a
machine.

While running a job in the standard universe, Condor
checkpoints the program at regular intervals creating a
checkpoint image (a snapshot of the current state of the pro-
gram and its memory). This image may be used to restart the
job on a new machine if the machine currently running the
job should crash or fail. A checkpoint image is also generat-
ed whenever Condor decides to migrate a job from one ma-
chine to another; the image is copied to the new machine,
restarting from where it left off on the previous machine.

Remote systems calls in the standard universe make a job
think it’s executing on the machine on which it was started.
When a job runs on a remote machine, a second process called
a condor_shadow runs on the submitting machine. When the
remote job attempts to make a system call or perform file I/O,
the condor_shadow process performs the system call or file
I/O instead, and returns the results to the remote machine.

To prepare a program to run in standard, it must be re-
linked (but not recompiled) using condor_compile. The Condor
libraries (linked to the program) intercept system calls and per-
form checkpointing while the program is running.

www.linuxmagazine.com

o

Extreme Linux

8/19/03 12:23 PM Page 43

To use the standard universe, a program must conform to
a number of restrictions. No multi-process jobs are allowed
(namely, avoid fork (), exec (), system(), etc.); interpro-
cess communication is not allowed; network communica-
tion must be brief; the use of signals SIGUSR2 and SIGTSTP
is prohibited; and alarms, timers, and sleeping are not allowed.
Additional restrictions are described in the documentation.

The vanilla universe is for programs that can not be suc-
cessfully re-linked with the Condor libraries. Jobs run in this
universe do not checkpoint or use remote system calls. When
a machine running such a job becomes unavailable, Condor
can either suspend the job (in hopes of completing it at a
later time), or it can restart the job from the beginning on
another machine in the available pool. Under Unix, Condor
assumes that a shared file system is available for vanilla
jobs, since I/O can’t be forwarded to the submitting host.
Alternatively, a file transfer mechanism in Condor may be
used to move files to the executing host.

Condor Pools and Daemons

A Condor pool consists of a single machine, the Central
Manager, and a number of other machines that join the pool
as participating resources. The Central Manager periodical-
ly receives status updates from the pool, and tries to match
pending requests with appropriate, available resources. The
condor_collector daemon runs on the Central Manager, and
receives ClassAds describing the state of all other daemons
in the pool. The condor_negotiator daemon performs all match-
making between jobs and resources: it queries the scheduler
daemons on each machine for resource requests, and is re-
sponsible for enforcing user priorities.

Any machine in a pool can be configured to execute Con-
dor jobs, including the Central Manager. Each execution host
runs the condor_startd daemon, which advertises the machine’s
resource attributes. The condor_starter program actually spawns
remote Condor jobs on a given machine: it establishes the
runtime environment and monitors the running job.

Any machine in a pool can be configured to allow or dis-
allow job submissions. Submit hosts require a fair amount of
resources, since every job submitted from that machine has
a corresponding condor_shadow process handling system calls
and file I/O. The condor_schedd daemon, which also runs on
submit hosts, represents resource requests to the Condor pool.
Once a job’s been matched to a resource, condor_schedd spawns
the condor_shadow needed to serve that job.

A single machine in the pool may optionally be config-
ured as a Checkpoint Server (running the condor_ckpt_server).
This machine stores all checkpoint files for submitted jobs in
the standard universe, so it requires lots of disk space and
good connectivity to the rest of the pool.

The condor_master daemon is the top-level Condor dae-

www.linuxmagazine.com

—p—

EXTREME LINUX

mon. [t keeps all other daemons running on machines in the
pool. condor_master runs on each machine in the pool re-
gardless of the functions the machine performs.

Installing Condor on a Cluster

The process of installing Condor varies, depending on the
type of pool being established. For a cluster with dedicated
nodes, some basic assumptions are usually made: the front-
end node is the Central Manager, the pool members share a
filesystem (usually /home), and all pool members are execu-
tion hosts.

The Condor distribution can be downloaded from the
Condor download page at http://www.cs.wisc.edu/condor/
downloads. The following example installation was per-
formed with Condor version 6.5.3 under Red Hat Linux 7.3.
Before beginning the installation, make sure that the fully
qualified domain name of the front-end node is specified in
Jetc/hosts.

While not absolutely necessary, creating a condor user on
every node in the cluster simplifies installation. This is usually
accomplished, as shown in Figure One, by running adduser
followed by a script that propagates the password, shadow,
and group files to the other nodes. Here ssync serves that pur-
pose. Since this creates a home directory for the condor user
on every node, that’s where the software should be installed.

Now that those two details are out of the way, the Condor
distribution should be downloaded and unpacked in some
location like /usr/local/src/. After moving to the resulting con-
dor-6.5 .3/ directory, execute the Perl script condor_install
on the front-end node to launch the installation process.

If you'd like to follow along closely with the next few pa-
ragraphs, you can download a transcript of a complete in-
stall from a cluster with a shared filesystem from http://
www.linuxmagazine.com/downloads/2003-10/extreme/
transcriptl.txt.

The first time condor_install is run, select a full installation
in step 1. All the nodes are listed in step 2, and you should
force the install to /home/condor in step 3, so that it’s acces-

FIGURE ONE: Starting the installation procedure

[root@node001 root]# adduser condor

[root@node001 root]# ssync

[root@node001 root]# cd /usr/local/src

[root@node001 src]# tar xvzf
condor-6.5.3-1inux-x86-glibc22.tar.gz

[root@node001 src]# cd condor-6.5.3

[root@node001 condor-6.5.3]1# ./condor_install

Welcome to condor_install. You are going to
need to answer a few

questions about how you want Condor configured
on this machine, what

Linux Magazine October 2003

o

43

Extreme Linux

44

8/19/03 12:23 PM Page 44

sible to all nodes in the cluster. The system admin-
istrator’s email address is set in step 4. Since most
clusters have a single password file that’s copied to
each node, choose that as the convention in step 5,
as shown in Figure Two.

If you want to use the java universe, the path for
your JVM should be entered in step 6.

The installer can create soft links for binaries and
scripts that users need to use Condor in step 7;
however, for this installation we simply add
[home/condor/bin to users’ paths instead. The name
of the Central Manager is provided in step 8. In
steps 9 and 10, tell the installer to create configura-
tion files for all nodes on the shared filesystem, and
set the pool name. A soft link to the Condor con-
fig file is created in step 11.

Once the initial installation is complete, condor_
it should run on all the nodes to create the local
lock file directory on each node at fvar/lock/condor
like in Figure Three.

Next, and although it’s not clear from the docu-

FIGURE THREE: Establishing lock files

[root@node001]# brsh /home/condor/sbin/condor_init

* ok ok k Kk nodeool *kkkk

/home /condor /condor_config already exists.

/home /condor /hosts/node001/log already exists.

/home /condor /hosts /node001 /spool already exists.

/home /condor /hosts /node001 /execute already exists.

/home /condor /hosts /node001 /condor_config.local already exists.
Condor has been initialized, but not started.

* ok kkk nodeooz *kkkk

/home /condor /condor_config already exists.

/home /condor /hosts/node002/log already exists.

/home /condor /hosts /node002 /spool already exists.

/home /condor /hosts /node002 /execute already exists.
Creating /home/condor/hosts/node002/condor_config.local

Creating /var/lock/condor
Condor has been initialized, but not started.

mentation, condor_install must be run a second time on the
front-end node to establish it as the Central Manager. In the
process, some information must be repeated even though it
was provided in the first invocation of condor_install.

The online file http://www.linuxmagazine.com/downloads/
2003-10/extreme/transcript2.txt details the second invocation
of condor_install. Be sure in step 1 to setup this host as a Condor
Central Manager. In step 3, specify the pool name again.

After the script completes, the condor_master daemon can
be started on every cluster node. The status of all nodes can

be checked by running condor_status from the binary direc-
tory at /home/condor/bin as shown in Figure Four (pg. 62). If
all nodes report in, everything should be fine.

To complete the installation, files in /etc/profile.d should
be created or edited to add /home/condor/bin to users’ default
paths. In addition, the Condor startup file should be copied
[etc/rc.dfinit.d and configured to run with chkconfig, so that
the Condor daemons are started automatically when each
node boots.

See Extreme Linux, pg. 62

FIGURE TWO: Steps to configure a cluster with a shared password file

To correctly run all jobs in your pool, including ones that aren't relinked for Condor, you must tell Condor if

you have a shared filesystem, and if so, what machines share it.

Please read the "Configuring Condor" section of the Administrator's manual

Filesystem Config File Entries")

Do all of the machines in your pool from your domain ("cluster.ornl.gov") share a common filesystem?

for a complete explanation of these (and other, related)

(in particular, the section "Shared
settings.

[no] yes

Configuring all machines to use "cluster.ornl.gov" for their filesystem domain.

Do all of the users across all the machines in your domain have a unique UID (in other words, do they all share a

common passwd file)? [no] yes

Configuring all machines to use "cluster.ornl.gov" for their uid domain.

In some cases, even if you have unique UIDs, you might not have all users listed in the password file on each machine.

Is this the case at your site? [no]

Press enter to continue.

October 2003 Linux Magazine

www.linuxmagazine.com

Guru Guidance

62

8/19/03 12:12 PM Page 62

Guru Guidance, from pg. 40

insert a disk, click the icon to reactivate it, and then try
accessing it again. Sometimes you can omit some of these
steps, though.

» MOUSE. When you activate the mouse, Bochs takes over
control of the mouse, which can make it hard to switch
between other programs. Clicking the middle button tog-
gles the mouse on and off, enabling you to work with
other programs along with Bochs.

» SNAPSHOTS. Click the Snapshot icon to create a dump
of the contents of a text display to a text file (snapshot.txt).
If you want to create a screen shot of a graphics mode, you
can use Linux graphics utilities to capture a screen shot of
Bochs, including its icon bar and window widgets. If
desired, you can then trim the image to the emulated OS

alone. The GIMP is an excellent, if big, program that can
handle this job.

» CONFIGURATION. Clicking the Config icon brings up a
configuration tool (typically in the console in which
Bochs is running). You can adjust various options normal-

—p—

ly set in the configuration file, tweaking them as neces-
sary for the software you're running.

Bochs isn’t without its limitations, of course. As already
noted, it’s quite slow compared to running programs direct-
ly, although, of course, running x86 programs directly isn’t
possible if you’re using a non-x86 host computer.

Bochs is also limited in its video mode: by default, it pro-
vides VGA (640x480) resolution at best, which can be quite
limiting.

Nonetheless, for some purposes Bochs can be extremely
useful. You can run multiple operating systems on one com-
puter, test a new OS or OS version without disturbing your
working configuration, run x86 operating systems on non-
x86 hardware, emulate networking, and so on. The Bochs
web site offers a great deal of documentation, including many
tips and techniques for common tasks, like making disk
images and running multiple operating systems. Need emu-

lation? Think inside the Bochs.

Roderick W. Smith is the author or co-author of eleven books,
including Advanced Linux Networking and Linux Power Tools.
He can be reached at rodsmith@rodsbooks.com.

Extreme Linux, from pg. 44

FIGURE FOUR: Checking the status of Condor nodes

More to Come!

Name
ActvtyTime

o OpSys
Now that Condor is installed on

the cluster, it’s ready to receive

job requests. Next month, we’ll vmlenode00l.c LINUX

learn more about Condor’s poli- DHI0s0s0E
cy and priority schemes, and see vmaenode00L. ¢ LINUX
0+00:00:05
how to submit and manage MPI nlEreicll? LN
and serial jobs in different Con- 0+00:00:15
dor universes to optimize resource vm2enode002 LINUX
utilization in a Beowulf cluster TH08008LS
environment. vml@node003 LINUX
0+00:00:15
Stay tuned! vm2enode003 LINUX
0+00:00:16
Forrest Hoffman is a computer
modeling and simulation research-
er at Oak Ridge National Labora-
tory. He can be reached at forrest
@climate.ornl.gov. You can view
the transcripts for the Condor instal- INTEL/LINUX
lations used in this column at http://
Total

www.linuxmagazine.com/

downloads/2003-10/extreme.

October 2003 Linux Magazine

[root@node001]# /home/condor/bin/condor_status

Arch State Activity LoadAv Mem
INTEL Unclaimed Idle 0.000 1008
INTEL Unclaimed Idle 0.000 1008
INTEL Unclaimed Idle 0.000 503
INTEL Unclaimed Idle 0.000 503
INTEL Unclaimed Idle 0.000 503
INTEL Unclaimed Idle 0.000 503

Machines Owner Claimed Unclaimed Matched Preempting
20 19 0 1 0 0

20 19 0 1 0 0

www.linuxmagazine.com

